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Better synchronizability in generalized adaptive networks
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In this paper, to study the interaction between network structure and dynamical property in the context of
synchronization, a previously proposed adaptive coupling method is generalized where the coupling strength of
a node from its neighbors not only develops adaptively according to the local synchronization property be-
tween the node and its neighbors (dynamical part) but also is modulated by its local structure, degree of the
node with the form 1/ (topological part). We can show both numerically and analytically that the input
coupling strength of the network after adaptation displays a power-law dependence on the degree, k=, where
the exponent 6 is controlled by @ as 6=(1+«)/2. Compared to the original adaptive coupling method, after the
addition of modulation, the distribution of the node’s intensity is tunable and can be more homogenous with
a=1, which results in better synchronizability. It is also found that the synchronization time can shrink greatly.
Our theoretical work in the context of synchronization provides not only a deeper understanding of the
interplay between structure and dynamics in real world systems, such as opinion formation and concensus, but
also potential approaches to manipulate the global collective dynamics through local adaptive control.
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Since the discovery and modeling of small world and
scale-free networks ten years ago [1,2], the dynamics in
complex networks have been a research topic of great atten-
tion. These dynamics include the epidemic and percolation
process, cascading behavior, traffic, opinion formation, syn-
chronization and consensues, etc. [3-7]. Now it is well
known that not only the topology of the networks but also
the weights of nodes and strengths of links have great effects
on the dynamics in the networks [8—11]. Most of these stud-
ies mainly considered the effects of structure on the dynam-
ics, while the dynamics have no effects on the network struc-
ture, i.e., no matter how the dynamics change, the topology
and the weights and strengths will keep unchanged. How-
ever, in most realistic dynamical networks, the dynamics can
sometimes induce changes in network structure. For ex-
ample, in airport networks of airports and airlines, the air-
lines affect the transportation and the demand of transporta-
tion between different airports may result in the increasing or
decreasing of the strengths of airlines or even the emergence
of new airlines. Another typical example is in the social net-
work where an epidemic spreads among the people. It is
obvious that the network structure will affect the direction
and speed of the epidemic spreading and meanwhile the sus-
ceptible will avoid contact with the infected by rewiring their
network connections, thus the network structure is changed
[12]. Similar interplay between structure and dynamics hap-
pens in some other realistic systems where synchronization
is relevant. For example, in neural systems, the synapses are
strengthened when two neural populations synchronize their
activity, which is known as the Hebbian learning rule and is
the mechanism underlying learning and memory of the brain.
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It has been shown that applying such Hebbian-like rule (cou-
pling strength increases faster when synchronization is stron-
ger) to large network of oscillators will lead to the formation
of dynamical and structural clusters [13]. In other systems,
global synchronization of the whole network is more desir-
able, for example, to achieve consensus on some opinion.
Base on our intuition and observation, we know that the
strategy often taken in such systems is “following the major-
ity.” The agents try to approach those individuals who have
different opinions from their own and persuade them to fol-
low their common opinion, while they do not have to put
much effort to enhance the interaction with the others al-
ready sharing similar opinions.

The impact of this type of adaptation on network structure
has been investigated recently [14—16] in the context of syn-
chronization of complex networks. Mathematically, we can
represent this type of adaptation by a rule opposite to the
Hebbian one: the coupling strength increases proportional to
the synchronization difference in order to suppress the dif-
ference. In particular, we previously proposed an adaptive
coupling method where the input coupling strength of a node
from its neighbors develops adaptively according to the local
synchronization property between the node and its neighbors
[14]. In such adaptive networks, when complete synchroni-
zation is achieved, the coupling strength becomes stable and
weighted, which obeys a power-law form with respect to the
node degree. This makes the network synchronizability bet-
ter than the symmetrical coupling method [17,18] but not yet
in the optimal situation. In our previous studies on the syn-
chronization in weighted random networks, we had proved
that for random networks with a large minimum degree,
larger average degree and more homogenous distribution of
node’s intensity will ensure better network synchronizability,
where the intensity of a node is defined as its total input
coupling strengths [8,19]. For a given average degree, the
network synchronizability will be optimized when all the
nodes’ intensities are equal. In the adaptive networks we pro-
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posed, it was found that the exponent in the power-law dis-
tribution of the strength is not sensitive to the dynamical
model, network size, average degree, the degree distribution
of the network and other factors, which results in the heter-
ogenous distribution of the node intensity, as a result the
network synchronizability is not yet the best. Thus, to find
out what could further influence the exponent and make the
distribution of node intensity homogeneous is of great impor-
tance for the understanding the interplay between structure
and dynamics and for the manipulation of the synchroniz-
ability of adaptive networks. The adaptive coupling methods
mentioned above are only based on the information of dy-
namical states and overlook the effects of network structure,
which is an critical property of complex networks and has
been proved to play an important role in the manipulation of
network synchronizability [8,20-22]. Previous analysis has
shown that the weight of the links in realistic networks are
correlated, so that the capacity or intensity of the node, de-
noted by the total weight, scales with the degrees. Thus, in
this paper, we consider the interaction between network
structure and dynamical state in dynamical network, and in-
vestigate how the network synchronizability will change. We
hope the distribution of the coupling strengths will be af-
fected if the coupling method takes both the information of
dynamical state and network structure into account.

In this paper, we generalize our former adaptive coupling
method introduced in [14] to incorporate the modulation of
coupling strength by the degree of each node with the form
1/k{. This is again motivated from our intuitive experience
in social dynamics that the capacity of any agent may not
increase as fast as degree. Nodes with larger number of
neighbors may have to put less effort to each of the neighbor
due to limitation of its capacity. How this limitation in the
capacity influences the collective dynamics and structure in
adaptive network is an interesting question. We are able to
show analytically that the input strength of the network after
adaptation displays a power law dependence on the degree,
k=% and the exponent @ is controlled by a as 6=(1+a)/2.
The analysis is confirmed by numerical simulations. As a
result, the distribution of node’s intensity becomes k'~?, and
can be regulated as homogenous as possible, which will lead
to enhanced network synchronizability. Moreover, we find
that with the enhancement of synchronization stability, the
shortest synchronization time will also shrink, and the net-
works are in the most synchronizable state.

The dynamical equation of the ith node in an N coupled
identical chaotic oscillator network is as following:

N N
x;=F(x;) + E aijWij[H(Xj) -H(x)]=F(x,) - 2 GUH(X,'),
j=1 j=1
(1)

where x; is the state of node i, i=1,...,N, F(x) is the dy-
namics of individual oscillator, H(x) is the linear output
function which decides how a node is coupled by its neigh-
bors, A=a;; is the adjacent matrix, and W;;>0 is the cou-
pling strength from node j to node i if they are connected.
G=(G};) is the coupling matrix and is defined as
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In most of the previous studies, the coupling strengths will
not be affected by the dynamics, i.e., the network is un-
changed [17-23], thus, the elements of the coupling matrix
can be written as GijZO'G?j, where G?j is fixed and o is the
overall coupling strength. In this paper, we focus on the case
that the coupling strength W;; will change adaptively with the
dynamical property of the network.

Before presenting the generalized adaptive networks
(GANs), we give an introduction of the original adaptive
networks (ANs). In AN, the input coupling strength W;; is
controlled by the local synchronization properties of the
nodes. In particular, we suppose that the strength to a node i
from all its k; neighbors increases uniformly among the k;
connections, in order to suppress its difference A; from the
mean activity of its neighbors, namely,

Wii(1) = Vi(1), Vi=yAJ/(1+A), (3)

where A;=|H(x;,)—(1/k;)Z;a;H(x;)| is the difference of the
output states between the node i and the average activity of
its neighbors and y>0 is the adaptation parameter. In this
coupling method, the input coupling strength of each node
depends only on the local dynamical property, here, we will
modify it up by introducing the effect of network structure
into the adaptive networks. In all the weighted coupling
methods that make use of the network structure information,
the method introduced in our previous work [8] is probably
the simplest but effective one, where the input coupling
strength of each node is defined as 1/k;, and a=1 corre-
sponds to the normalized Laplacian matrix, at which point
the network synchronizability is optimized. Thus, we design
the generalized adaptive coupling method as

Vi = Viki= 7 Al(1+ A, (4

where « is tunable and y'=v/k{ is the generalized adapta-
tion parameter. When a >0 nodes with larger degrees will be
coupled more slightly, while & <0 corresponds to the reverse
case and when a=0, the coupling method degenerates into
the original one and V' =V.

For (generalized) adaptive networks, when the networks
reach the synchronization state, the coupling strengths will
be stable, thus, the dynamical equation can be written as

N
=1

According to the master stability function [17,18], the stabil-
ity of this synchronization state can be measured by the ei-
genvalues of the coupling matrix G°. Although the coupling
matrix is asymmetric, similar to [8] we can prove that all the
eigenvalues are none-negative real values, and more specifi-
cally, when the network is connected, there will be only one
zero value, thus all the eigenvalues can be ranked as 0=\,
<Ny=N;=---=\y. In (generalized) adaptive networks,
when
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a <oA= = oAy < g, (6)
the synchronization state will be stable, where a; and «; is
determined by F and H, which have nothing to do with the
network structure. Thus for a network, larger A, and smaller
Ay means better synchronizability. In some cases, «, is in-
finity and the synchronization region is half bounded, and the
network synchronizability is enhanced by increasing the
value of N\,. In the other cases, a, takes finite value and the
synchronization region is bounded. When the eigenratio R
=Ay/ M <a,/ay=p, the network can be synchronized and
smaller R indicates better network synchronizability.

In the (generalized) adaptive networks, assume that the
initial coupling strength along each link is a random small
value and the chaotic oscillators iterate from random initial
states. Then, A; in Eq. (3) is about uniform for all the nodes
in the beginning and the input coupling strength of each node
will increase uniformly in the whole ANs in a short period,
ie., W;=V,(t)=y. But in GANs, from the very beginning
the input coupling strengths will be very different because of
the differences between node degrees, i.e., W;=V/(r)=1y't
=(y/k{)t, and by comparison, the input coupling strengths
for nodes with smaller degrees will increase faster in case of
a>0. If all the parameters are taken properly, the networks
can reach complete synchronization state and the input cou-
pling strength for each node will stabilize at different con-
stants Gg: Ve,

To give a clear picture of the synchronization process of
the whole network, we let the nodes iterate in the well-
known Barabdsi-Albert (BA) scale-free networks [2]. We
will investigate how the input coupling strengths of different
nodes change from about zero to constants, what affects the
synchronization time, and how the synchronization stability
will be after the network reaches complete synchronization
state. In the simulation, the node in network is represented
by the chaotic Réssler oscillator, x=(x,y,z) and F(x)=[—y
-z,x+0.2y,z(x=7.0)+0.2]. Here, we take the output func-
tion H=(1,0,0), which makes the synchronization region
bounded. In Fig. 1, the change of input coupling strength
with time for three nodes with large, middle and small de-
grees are plotted. It is seen that at the very beginning, there is
almost no difference in the input coupling strength between
nodes with different degrees in AN, but the differences are
obvious for the nodes in GANs, which confirms our above
analysis. The intensive investigation in [14] found that the
input coupling strengths obey power-law form with node de-
grees after the network reaches complete synchronization,
and the power exponent is independent of network size, av-
erage degree, adaptation parameter v, and the degree distri-
bution of the network. However, in Fig. 1 it is obvious that
the distribution of input coupling strength in GAN is more
heterogeneous than that in AN, which results from the regu-
lation of input coupling strength. Next, we will investigate
how the distribution of input coupling strength is affected by
the parameter a.

In the simulation, we find that the distribution of stable
input coupling strength display power-law relations with the
node’s degree for any value of a, i.e., Vl-’ ~k‘9<“), but the
exponents 6 is a function of parameter «. In Fig. 2(a) we
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FIG. 1. The variation of input coupling strength as a function of
time for three nodes with typical degrees: k;qy=16 (large degree),
k300=8 (middle degree) and kjppo=>5 (small degree). The nodes are
coupled by adaptive coupling method with adaptation parameter y
=0.006 (gray lines) and generalized adaptive coupling method with
v=0.3 and @=1.0 (black lines), respectively. The network is BA
scale-free network with size N=1000 and minimum degree M=5.

present the change of input coupling strength with respect to
the degree k in GAN with =0.0 (AN) and @=1.0 at differ-
ent adaptation parameter vy. It is evident that the exponent 6
of GAN at @«=1.0 is much larger than that at &=0.0, which is
independent of the adaptation parameter y. Then we investi-
gate the relation between the exponent 6 and parameter «
and we find that 6 increases almost linearly with «, which
means larger a makes the distribution of input coupling
strengths more heterogenous [Fig. 2(b)]. This result is obvi-
ous because at the very beginning, the input coupling
strength for each node increases proportional to its general-
ized adaptation parameter y'=1y/k;", whose value depends
not only on the parameter « but also on the node degree k;,
and with a’s increasing, the differences between generalized

T
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O GAN~y=0.12
10"+ GAN 7=0.20-
GAN y=0.28
—~
X
N
>

® ANy=0.0020 ¥
A AN=00024 B

10 10°

FIG. 2. (a) Relations between the input coupling strength V(k)
and degree k in AN and GAN at a=1.0. The distribution of V is a
power function of k: V(k)o k=% (b) The change of 6 and R with a.
The straight line is the fitting line of # and the dash line shows the
eigenratio for the same networks that coupled by normalized La-
placian matrix. The simulation is based on BA scale-free network
with 1000 nodes and minimum degree 10. Each node is obtain after
the averaging over 50 network configurations and 50 initial states
for each configuration.
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adaptation parameters of nodes with different degrees be-
come larger and larger, thus, the distribution of stable input
coupling strength will become more and more heterogenous,
corresponding to increasing 6. We find that the results can be
well fitted by

0= 6,+0.5a, (7)

where 6, is the power exponent when @=0.0 (ANs), as plot-
ted in Fig. 2(b) (the straight line).

Next, we can show from theoretical analysis that Eq. (7)
is satisfied. First let us linearize Eq. (1) around the local
mean-field X;=1/k;2;a;x;. We can take the linear approxima-
tion for H(x;) and H(x;) in Eq. (1) as

H(Xj) = DH(ii)(xj -X;), (8)

H(x,) =~ DH(X))(x; - X,). )

Denoting Ax,;=x;—X;, we can see that the network coupling
term in Eq. (1) reads

N N
2 a;W,[H(x) -H(x;)] = Vi(t)E a;[H(x;) - H(x,)]
j=1 j=1

=~ - k;V(t)DH(X,) Ax;. (10)

As a result, we obtain the following linear evolution equation
for Ax;,

Ax; =[DF(x;) - DH(X))k;V(1)]Ax;. (11)

We can go further to assume that the dynamics is already
close to the synchronization manifold s, so that the local
mean field X;=s, and Eq. (11) can be further approximated
as

Ax; =[DF(s) - DH(s)k;V (1) ]Ax;. (12)

Note that Eq. (12) only depends on the index i. This means
that the above approximations we applied have decoupled
the evolution of Ax for each node. Equation (12) has the
same form for each node if the index i is dropped, and we
can represent this common form as

£=[DF(s) — eDH(s)]¢, (13)

where £=Ax; and e=k;V,(¢). Written in this way, this equa-
tion has the same form as the generic mode equation in the
framework of master stability function [18]. In this frame-
work, when € is a time-invariant constant, the magnitude |£|
evolves asymptotically as

&= A(e)|&

where A(e) is the master stability function, i.e., the largest
Lyapunov exponent of Eq. (13) with constant . We note that
for many oscillators F and coupling functions H, A(e) first
decreases with € almost linearly in a range of € after crossing
the threshold «; (cf. Fig. 1 of [18]), i.e., A(e) ~—e.

In adaptive network, the coupling strength V; increases
from a small value around zero. In the very beginning, there
is no synchronization, and A; is quite uniform for all the
nodes; according to Eq. (4), V; increases with a constant rate

; (14)
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proportional to y' =y/k{" till k;V(t) exceeds the synchroniza-
tion threshold «; where A, starts to decrease due to synchro-
nization. The increase in V; slows down and quickly ap-
proaches to a constant value (see Fig. 1). Therefore, the
evolution of ¢ in Eq. (13) with time-varying e=k;V,(t) can be
approximated by Eq. (14) basing on the master stability
function under constant €. Consequently, we obtain |Ax,~|
~ A(e)|Ax;| ~—k;V,(t)|Ax,;|. For a linear coupling function
H(x)=Cx, like the one considered here, we also have A,
=[H(x;) - (1/k) 2 a;H(x;)|=|C| X |Ax;|. Thus, we get lincar-
ized evolution equations for A; as

A1) ~ =KV Ar). (15)

From Eq. (4), we also get the following linear equation for
the evolution of V,,

Vi) ~ LA, (16)
ki
In the following we will solve Egs. (15) and (16). Let
A1) =—pk;V (1) A7), where p>0 is a constant. From Eqs.
(15) and (16), we have

2y
pkq+1

VoY = 2viosn=--T:i0.  (7)

l

Integrating both sides of Eq. (17) from 0 to ¢, it follows that

2y

a+l
i

VA1) ~ - [A(1) = A(0)] + VZ(0). (18)

Taking Eq. (18) into Eq. (16), we get

a+1 2 2
v~ {_ Pk Vi) - VAO)) | Ai(o)}
Kk} 2y
x—p—"{v?u)—v%(ow%ﬁﬂ (19)
2 pk;

By solving Eq. (19), one obtains

2A,0
lim V(1) = Vl-z(O) + % _ ,y1/2ki—(a+l)/2’ (20)
1—+% pkl

by taking V;(0)=0 and A;(0) a similar constant for different
nodes (random initial condition), one finally gets

V(k) ~ k9, (21)
a+1
0a) = S (22)

which suits Eq. (7) very well. The analysis also predicts that
6,=0.5.

We also investigate whether the distribution of the initial
states of the input coupling strengths will affect their final
distribution. In simulation, we have tried some distribution
of initial coupling strength V;(0)=¢;, such as random distri-
bution, Poisson distribution and power-law distribution, the
result always remains the same as long as the initial coupling
strengths are small enough.
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FIG. 3. (a) The synchronization time Ieyne VS adaptation param-
eter vy at different . The stars are vy, for corresponding parameters.

(b) The change of shortest synchronization time with the parameter
a. The other network parameters are the same as in Fig. 2.

To investigate the network synchronizability, we obtain
the intensity of nodes in stable GANs, S;=k;V;~ k 0-0 when
1.0-60=0.0, i.e., a=2X(1.0-6,), all the nodes have the
same intensity, and the network synchronizability will be op-
timized, while larger or smaller « will degrade the network
synchronizability. The eigenratio R as a function of « is also
shown Fig. 2(b). In our case, 6,~0.54, which is very close
to the analytical prediction in Eq. (22). The small difference
could mainly due to the fact that A(e) is not an exact linear
function of € (cf. Fig. 1 of [18]). Accordingly, a=0.92 is
expected to be the optimal point. This is confirmed by the
simulation result: R is minimal at the point and is almost the
same as that of the networks coupled by normalized Laplac-
ian matrix, where each node is coupled at strength 1/k; [dash
line in Fig. 2(b)].

Synchronization time is an important character of syn-
chronization performance of the network, thus, we analyze
the change of synchronization time in GANs. In our system
two parameters y and « can change the synchronization
time. In the simulations, synchronization is supposed to be
achieved when the standard deviation of the states of oscil-
lators is less than 107 and stay less than 107 for a period
600. The time to reach this threshold is taken as the synchro-
nization time.

If the synchronization region is bounded, when y<<1, the
network will synchronize and the larger the v is the faster the
network reaches complete synchronization state. Then we
investigate the effect of parameter a on the synchronization
time. In Fig. 3(a), we show the synchronization time .
with respect to parameter vy at different «. It is clearly seen
that for a given «, the synchronization time will decrease
with the increasing of v till vy,, beyond which the network
will not synchronize, and at . the synchronization time is
the shortest. Just at this point, Ay= a,, thus A\,= a,/R. In
[24], the authors have shown that the synchronization time is
proportional to 1/\,, thus we obtained the minimal synchro-
nization time fyne min® 1/N, < R. We present the simulation
results of Zgyne min in Fig. 3(b), and the shape of the curve is
similar to that of R in Fig. 2(b). The results we have obtained
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so far indicate that the generalized adaptive coupling method
not only can obtain the best synchronizability by minimizing
the eigenratio R, but also allows the network to achieve the
fastest synchronization at the same « value by choosing y
close to y., where the synchronization time is minimal for all
the combinations of & and 7.

It has been confirmed that the original adaptive coupling
method will make the network synchronizability better than
the symmetric coupling method [14], here we give a com-
parison between the best case of generalized adaptive cou-
pling method (@=0.92) and the original one (a=0). From
Figs. 2(b) and 3(b) it is obtained that the eigenratio decreases
from about 7.0 to 3.5, which means that for the given scale-
free network of N=1000 nodes the range of coupling
strength where synchronization can be achieved is doubled.
Further more, the synchronization time decreases from about
90.3 to 30.4. Moreover, at the optimal point, R does not
increase with the system size N, while R increases with N
when deviates from the optimal point. According to our pre-
vious analysis of weighted networks [19], R is mainly deter-
mined by the maximal and minimal intensities as R
= Smax/Smin = [kmax/kmin]l_az[kmax/kmin](l_a)/zs where kmax
increases with N in scale-free network. In this sense, the
enhancement of synchronization by the generalized adaptive
scheme can be very significant in large networks when tak-
ing >0, i.e., when the capacity of the nodes in the network
is limited. It is also interesting to compare the adaptive net-
work to static weighted network with w;;=1/k;" [8]. In the
static networks, we have R= Smax/Smm [kmax/ Kin]' =4,
which is different from adaptive networks, but in both cases
the optimal synchronizability happens at a=1.

We also investigate the synchronization property of GANs
with half-bounded synchronization region and no essential
difference has been found.

In conclusion, to study the interaction of network struc-
ture and dynamical property, we generalize the adaptive cou-
pling method by regulating the input coupling strength by
each node’s degree, which takes into account not only the
local dynamical information but also the local structure in-
formation 1/k{, which represents the relative capacity of a
node as a function of the degree. We have shown both nu-
merically and analytically that the input coupling strength of
the network after adaptation displays a power-law depen-
dence on the degree, and the exponent 6 is controlled by «
according to Eq. (22). The results provide us a deeper under-
standing how the local interplay between structure and dy-
namics can lead to profound changes in the organization of
large-scale structure and collective dynamics in complex net-
works. Interestingly, limitation in the node capacity (the re-
gion @>0) is found to enhance synchronization. This result
has meaningful implications in understanding and manipula-
tion of consensus in social dynamics.
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